First eigenvalue of the $p$-Laplacian on Kähler manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Global Curvature Pinching Result of the First Eigenvalue of the Laplacian on Riemannian Manifolds

and Applied Analysis 3 then there exists a constant C 3 (n) > 0 such that λ 1 (M) ≥ C 3 (n). Proof. The proof mainly belongs to Li and Yau [6]. Let u be the normalized eigenfunction ofM, set V = log (a + u) where a > 1. Then, we can easily get that ΔV = −λ 1 (M) u a + u − |∇V| 2 . (8) Denote that Q(x) = |∇V|(x), and we then have by the Ricci identity on manifolds with Ric (M) ≥ 0:

متن کامل

The ∞−Laplacian first eigenvalue problem

We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In section 5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this will be the object of a join...

متن کامل

Kähler (& Hyper-kähler) Manifolds

These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short introduction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces. However, they also include other interesting results not related to K3 sur...

متن کامل

A note on the first eigenvalue of spherically symmetric manifolds

We give lower and upper bounds for the first eigenvalue of geodesic balls in spherically symmetric manifolds. These lower and upper bounds are C0-dependent on the metric coefficients. It gives better lower bounds for the first eigenvalue of spherical caps than those from Betz-Camera-Gzyl. Mathematics Subject Classification: (2000):35P15, 58C40.

متن کامل

EIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS

In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2019

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/14395